NAVAL POSTGRADUATE SCHOOL Monterey, California

ASYMPTOTIC PROPERTIES OF A SENSOR ALLOCATION MODEL

by
Donald P. Gaver
Patricia A. Jacobs
Mark Youngren

May 1995

Approved for public release; distribution is unlimited
Prepared for: Institute for Joint Warfare Analysis, Monterey, CA 93943-5000
and
Force Structure, Resources and Assessment Directorate (18),
The Joint Staff, Washington, DC 20350-5000

$$
\begin{aligned}
& \text { 2. } / 2+1
\end{aligned}
$$

$$
\begin{aligned}
& 1+z=-k-2 x=2=2 \\
& \text { [} 2
\end{aligned}
$$

NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5000

Rear Admiral T. A. Mercer
Superintendent
Harrison Shull

This report was prepared for and funded by the Institute for Joint Warfare Analysis, Monterey, CA, and the Force Structure, Resources, and Assessment Directorate (J8), The Joint Staff, Washington DC.

Reproduction of all or part of this report is authorized.
This report was prepared by:

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE May 1995 3. REPORT TYPE AND Technical	TES COVERED
4. TITLE AND SUBTTTLE Asymptotic Properties of a Sensor Allocation Model	5. FUNDING NUMBERS RLGPD
6. AUTHOR(S) Donald P. Gaver, Patricia A. Jacobs and Mark Youngren	
7. PERFORMING ORGANIZATKON NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943	8. PERFORMING ORGANIZATION REPORT NUMBER NPS-OR-95-002
9. SPONSORING / MONTTORING AGENCY NAME(S) AND ADDRESS(ES) Institute for Joint Warfare Analysis, Monterey, CA 93943-5000 Force Structure, Resources and Assessment Directorate (J8), The Joint Staff, Washington DC, 20350-5000	10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.
13. ABSTRACT (Maximum 200 words)

A dynamic adaptive protocol for allocating sensor assets to locations where most opponents' assets appear is described, analyzed, and illustrated.

14. SUBJECT TERMS adaptive allocation; estimation of the number of binomial trials; normal approximations			15. NUMBER OF PAGES 36
			16. PRICE CODE
17. SECURTY CLASSIFICATION OF REPORT Unclassified	18. SECURTY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURTY CLASSIFICATION of ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

Asymptotic Properties of a Sensor Allocation Model

D. P. Gaver
P. A. Jacobs
M. Youngren

0. Introduction and Summary

Sensor resources are to be allocated among I non-overlapping but possibly contiguous geographical locations called nodes. Each sensor look at a node results in an observation, with error, of the number of units that are at the node. In military applications units may be individual assets such as tanks or ships, or possibly small groups organized as platoons or companies and in geographical proximity; in ecological applications, they might be animals, singly or in groups, or particular vegetation types. The observations are then to be used to estimate the numbers of units at each node. The problem is to allocate sensor resources so as to minimize a measure of the error of the estimates, and of the estimate of the sum of the numbers at all nodes. It is assumed that the units remain on the nodes and do not migrate, although for some sensor types the units must be in motion on the node at least some of the time in order for detection to take place.

The objective of this paper is to propose and study adaptive allocation of sensor effort in such a way as to focus the sensor's attention sequentially and purposefully on nodes so as to pay most attention to those nodes about which the greatest uncertainty, or interest, currently prevails. This problem has features in common with adaptive bin-packing problems (cf. Gaver et al., 1995) and adaptive allocation of customers to servers (cf. Gaver et al., 1993).

Numerical examples show that a properly selected sequentially adaptive rule will provide estimates of improved precision.

A related investigation that has recently come to our attention is that by Thompson and Seber (1994). Their procedures can also be analyzed using the methodology proposed in this paper.

1. The Model

There are I nodes. Assume that node i contains r_{i} units. Sensor resources are allocated to one of the I nodes at times that occur according to a Poisson process with rate λ. The sensor resource is allocated to node i with probability α_{i} which is tailored to depend on past allocations in a purposeful way. Let $Z_{n}(i)$ be the $n^{\text {th }}$ observation of node i; a simple model is that $\left\{Z_{n}(i) ; n=1,2, \ldots\right\}$ are iid with binomial distribution with r_{i} trials and known probability of success p_{i} which is the probability of unit detection at node i. We assume for illustration that the number of units on a node does not change, although an adaptive scheme of the type proposed should effectively follow changes in node population.

Let $N_{i}(t)$ be the number of times in $[0, t]$ that node i is observed by a sensor.
Let

$$
V(i ; t)=Z_{1}(i)+\ldots+Z_{N_{i}(t)}(i)
$$

be the sum of all the observations during $[0, t]$ for node i.
Under some conditions $V(i ; t)$ has a binomial distribution with $N_{i}(t) r_{i}$ trials and probability of success p_{i}, given $N_{i}(t)$, although this assumption may not be especially accurate in general. Assuming it to be adequate for the moment, an estimate for the number of units at node i based on observations made during $[0, t]$ is

$$
\begin{equation*}
\hat{r}_{i}(t)=\frac{V(i ; t)}{N_{i}(t) p_{i}} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{align*}
\operatorname{Var}\left[\hat{r}_{i}(t)\right] & =\frac{r_{i} N_{i}(t) p_{i}\left(1-p_{i}\right)}{N_{i}(t)^{2} p_{i}^{2}} \tag{1.2}\\
& =\frac{r_{i}\left(1-p_{i}\right)}{N_{i}(t) p_{i}} \approx \frac{\hat{r}_{i}(t)\left(1-p_{i}\right)}{N_{i}(t) p_{i}}=\frac{V(i ; t)\left(1-p_{i}\right)}{N_{i}(t)^{2} p_{i}^{2}} . \tag{1.3}
\end{align*}
$$

There has been much statistical attention paid to estimating the number of trials in a binomial distribution, given probability of success; for recent discussion see Hall (1994). Here we use the simplest such estimator.

Now consider the following adaptive allocation rule. A sensor resource arriving at time t is allocated to node i with probability

$$
\begin{equation*}
\alpha_{i}\left(N_{i}(t), V_{i}(t) ; N(t), V(t)\right)=\frac{h_{i}\left(N_{i}(t), V_{i}(t)\right)}{\sum_{j=1}^{I} h_{j}\left(N_{j}(t), V_{j}(t)\right)} \tag{1.4}
\end{equation*}
$$

where the h_{i} are strictly positive sufficiently smooth functions such that $h_{j}(c P x, c P y)=c P h_{j}(x, y)$.

One possible form for h_{i} is

$$
\begin{equation*}
h_{i}(x, v)=\left[\frac{a_{i}}{x}+\frac{v\left(1-p_{i}\right)}{x^{2} p_{i}^{2}}\right]^{\gamma} \text { for } \gamma>0 \text { and } a_{i}>0 ; \tag{1.5}
\end{equation*}
$$

if it is assumed that given $N_{i}(t), V_{i}(t)$ is binomially distributed with mean $N_{i}(t) p_{i}$, then from (1.3) it follows that for this function h_{i}, sensor resources tend to be allocated to those nodes for which the variance, and hence its square root, the standard error of the estimated number of units, is the largest; the probability of allocation to the most uncertain node (by this measure) increases rapidly, approaching unity as γ increases. This tends to bring down that standard error quickly, and to equate standard errors of the estimates across nodes. Clearly, alternative measures of overall sensor performance are feasible, and possibly desirable, such as ones that endeavor to equalize fractional or percent error on
nodes, or ones that also respond to an independent measure of importance of the units on a node. Additionally, node contents may be of various types, which can be considered. Thus, the present discussion is of an illustration of an adaptive allocation scheme.

The purposeful allocation of (1.4) introduces dependence between $\left\{N_{i}(t) ; t \geq 0\right\}$ and $\left\{V_{i}(t) ; t \geq 0\right\}$. Asymptotic results for the means $E\left[N_{i}(t)\right]$ and $E\left[V_{i}(t)\right]$ as the rate of the Poisson process $\lambda \rightarrow \infty$ are obtained in Section 2. It is shown that the purposeful allocation estimate $\hat{r}_{i}(t)$ is asymptotically unbiased. Section 3 presents results for the asymptotic means for specific form of function h_{i} (1.5). Section 4 discusses asymptotic results for the second moments of $\left\{N_{i}(t) ; t \geq 0\right\}$ and $\left\{V_{i}(t)\right.$; $t \geq 0\}$ and presents approximate expressions for the $\operatorname{Var}\left[\hat{r}_{i}(t)\right]$ and $\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right]$. Section 5 describes a simpler Poisson approximation. Section 6 presents results from simulation experiments.

2. First-Moment Calculations and Asymptotics

Note that for $h>0$

$$
\begin{equation*}
E\left[N_{i}(t+h)[N(t), V(t)]=N_{i}(t)+\lambda \alpha_{i}(N, V) h .\right. \tag{2.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
E\left[N_{i}(t+h)\right]=E\left[N_{i}(t)\right]+\lambda E\left[\alpha_{i}(N, V) h\right] . \tag{2.2}
\end{equation*}
$$

Assuming derivatives exist, we have

$$
\begin{equation*}
\frac{d}{d t} E\left[N_{i}(t)\right]=\lambda E\left[\alpha_{i}(N(t), V(t))\right] . \tag{2.3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
E\left[V_{i}(t+h) \mid N(t), V(t)\right]=V_{i}(t)+\lambda h \alpha_{i}(N, V) r_{i} p_{i} . \tag{2.4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
E\left[V_{i}(t+h)\right]=E\left[V_{i}(t)\right]+\lambda h r_{i} p_{i} E\left[\alpha_{i}(N, V) h\right] . \tag{2.5}
\end{equation*}
$$

Assuming derivatives exist, we have

$$
\begin{equation*}
\frac{d}{d t} E\left[V_{i}(t)\right]=r_{i} p_{i} \lambda E\left[\alpha_{i}(N, V)\right] \tag{2.6}
\end{equation*}
$$

Assume α_{i} is of the form (1.4) where h_{i} is sufficiently smooth with $h_{i}\left(c P_{x}, c{ }^{p} y\right)=c p h_{i}(x, y)$ for constants c and $h_{i}(x, y)>0$ for all $x, y>0$. We have

$$
\begin{align*}
\alpha_{i}(N(t), V(t)) & =\frac{h_{i}\left(N_{i}(t), V_{i}(t)\right)}{\sum_{j} h_{j}\left(N_{j}(t), V_{j}(t)\right)} \tag{2.7}\\
& =\frac{h_{i}\left(N_{i}(t) / \lambda, V_{i}(t) / \lambda\right)}{\sum_{j} h_{j}\left(N_{j}(t) / \lambda, V_{j}(t) / \lambda\right)} .
\end{align*}
$$

Assume $\lim _{\lambda \rightarrow \infty} N_{i}(t) / \lambda=m_{i}(t), \lim _{\lambda \rightarrow \infty} V_{i}(t) / \lambda=v_{i}(t), \lim _{\lambda \rightarrow \infty} \frac{d}{d t} E\left[N_{i}(t) / \lambda\right]=\frac{d}{d t} m_{i}(t)$, and $\lim _{\lambda \rightarrow \infty} \frac{d}{d t} E\left[V_{i}(t) / \lambda\right]=\frac{d}{d t} v_{i}(t)$.

Dividing both sides of (2.3) and (2.6) by λ and letting $\lambda \rightarrow \infty$, the bounded convergence theorem yields

$$
\begin{equation*}
\frac{d}{d t} m_{i}(t)=\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} v_{i}(t)=r_{i} p_{i} \frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \tag{2.9}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
v_{i}(t)=r_{i} p_{i} m_{i}(t) \tag{2.10}
\end{equation*}
$$

3. Purposeful Allocation

The equations for $m_{i}(t),(2.8)$, can be solved for special functions h_{i}. For example, assume

$$
\begin{equation*}
h_{i}(x, y)=\left[\frac{a_{i}}{x}+\frac{y\left(1-p_{i}\right)}{x^{2} p_{i}^{2}}\right]^{\gamma} \quad \text { for } \gamma \geq 0 \text { and } a_{i}>0 . \tag{3.1}
\end{equation*}
$$

Since

$$
\begin{align*}
v_{i}(t) & =m_{i}(t) r_{i} p_{i} \\
h_{i}\left(m_{i}(t), v_{i}(t)\right) & =\left[\frac{a_{i}}{m_{i}(t)}+\frac{r_{i}\left(1-p_{i}\right)}{m_{i}(t) p_{i}}\right]^{\gamma} . \tag{3.2}
\end{align*}
$$

In this case (2.8) can be rewritten as

$$
\begin{equation*}
\frac{\frac{d}{d t} m_{i}(t)}{\frac{d}{d t} m_{j}(t)}=\left[\frac{a_{i}+r_{i} c_{i}}{a_{j}+r_{j} c_{j}} \frac{m_{j}(t)}{m_{i}(t)}\right]^{\gamma} \tag{3.3}
\end{equation*}
$$

where $c_{i}=\left(1-p_{i}\right) / p_{i}$.
The functions

$$
\begin{equation*}
m_{i}(t)=K\left(a_{i}+r_{i} c_{i}\right)^{\gamma /(\gamma+1)} t \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
K=\left[\sum_{i=1}^{I}\left(a_{i}+r_{i} c_{i}\right)^{\gamma /(\gamma+1)}\right]^{-1} \tag{3.5}
\end{equation*}
$$

are a solution to (2.8).
Thus, in the limit as $t \rightarrow \infty$, the probability that a sensor resource at time t looks at node i is

$$
\begin{equation*}
\alpha_{i}=\frac{\left(a_{i}+r_{i} c_{i}\right)^{\gamma /(\gamma+1)}}{\sum_{j}\left(a_{j}+r_{j} c_{j}\right)^{\gamma /(\gamma+1)}} \tag{3.6}
\end{equation*}
$$

If $\gamma=0$, then

$$
\begin{equation*}
\alpha_{i}=1 / I \tag{3.7}
\end{equation*}
$$

and the allocation is equally likely.
If $\gamma \rightarrow \infty$, then

$$
\begin{equation*}
\alpha_{i}=\frac{a_{i}+r_{i} c_{i}}{\sum_{j} a_{j}+r_{j} c_{j}} \tag{3.8}
\end{equation*}
$$

If, further, the probability of detection on node i, p_{i}, is constant for all the nodes, then the probabilistic allocation for $\gamma \rightarrow \infty$ is roughly proportional to the number of units on the node.

4. Scaling and Approximate Variances of Estimators

Let

$$
\begin{align*}
X_{j}(t) & =\frac{N_{j}(t)-\lambda m_{j}(t)}{\sqrt{\lambda}} \tag{4.1}\\
Y_{j}(t) & =\frac{V_{j}(t)-\lambda v_{j}(t)}{\sqrt{\lambda}} \tag{4.2}
\end{align*}
$$

In Appendix A , moment generating functions are used to show the asymptotic normality of $\left\{\left(X_{j}(t), Y_{j}(t)\right) ; t \geq 0\right\}$ as $\lambda \rightarrow \infty$. Further, differential equations for their second moments are obtained.

Rewriting

$$
\begin{gather*}
N_{j}(t)=\lambda m_{j}(t)+\sqrt{\lambda} X_{j}(t) \tag{4.3}\\
V_{j}(t)=\lambda v_{j}(t)+\sqrt{\lambda} Y_{j}(t) \tag{4.4}
\end{gather*}
$$

An approximate variance of the estimator of the number of units on node i,

$$
\begin{equation*}
\hat{r}_{i}(t)=\frac{V_{i}(t)}{N_{i}(t)} \frac{1}{p_{i}} \tag{4.5}
\end{equation*}
$$

can be computed using the "delta method" as follows; cf. Bickel and Doksum (1977). To begin,

$$
\begin{equation*}
\operatorname{Var}\left[\hat{r}_{i}(t)\right]=\frac{1}{p_{i}^{2}} \operatorname{Var}\left[\frac{V_{i}(t)}{N_{i}(t)}\right] . \tag{4.6}
\end{equation*}
$$

A Taylor expansion yields

$$
\begin{align*}
\frac{V_{i}(t)}{N_{i}(t)} & =\frac{v_{i}(t)+Y_{i}(t) / \sqrt{\lambda}}{m_{i}(t)+X_{i}(t) / \sqrt{\lambda}} \\
& =\frac{v_{i}(t)}{m_{i}(t)}+\frac{1}{m_{i}(t)}\left[Y_{i}(t) / \sqrt{\lambda}\right]-\frac{v_{i}(t)}{m_{i}(t)^{2}}\left(X_{i}(t) / \sqrt{\lambda}\right) \tag{4.7}\\
& +O\left(\frac{1}{\lambda}\right)
\end{align*}
$$

Thus,

$$
\begin{align*}
\operatorname{Var}\left[\frac{V_{i}(t)}{N_{i}(t)}\right] & \approx E\left[\left(\frac{V_{i}(t)}{N_{i}(t)}-\frac{v_{i}(t)}{m_{i}(t)}\right)^{2}\right] \tag{4.8}\\
& \approx \frac{1}{\lambda m_{i}(t)^{2}}\left\{E\left[Y_{i}^{2}(t)\right]+\left[\frac{v_{i}(t)}{m_{i}(t)}\right]^{2} E\left[X_{i}^{2}(t)\right]-2 \frac{v_{i}(t)}{m_{i}(t)} E\left[Y_{i}(t) X_{i}(t)\right]\right\} \\
& =\frac{1}{\lambda m_{i}(t)^{2}}\left\{E\left[Y_{i}^{2}(t)\right]+\left(r_{i} p_{i}\right)^{2} E\left[X_{i}^{2}(t)\right]-2 r_{i} p_{i} E\left[X_{i}(t) Y_{i}(t)\right]\right\} . \tag{4.9}
\end{align*}
$$

Hence, an approximate variance of the estimate of the number of units on node i

$$
\begin{equation*}
\operatorname{Var}\left[\hat{r}_{i}(t)\right] \approx \frac{1}{p_{i}^{2}} \frac{1}{\lambda m_{i}(t)^{2}}\left\{E\left[Y_{i}^{2}(t)\right]+\left(r_{i} p_{i}\right)^{2} E\left[X_{i}^{2}(t)\right]-2 r_{i} p_{i} E\left[X_{i}(t) Y_{i}(t)\right]\right\} \tag{4.10}
\end{equation*}
$$

To approximate the variance of the sum of the estimates, a Taylor expansion yields

$$
\begin{align*}
E\left[\frac{V_{i}(t)}{N_{i}(t)} \frac{V_{j}(t)}{N_{j}(t)}\right] & =E\left[\frac{v_{i}(t)+Y_{i}(t) / \sqrt{\lambda}}{m_{i}(t)+X_{i}(t) / \sqrt{\lambda}} \frac{v_{j}(t)+Y_{j}(t) / \sqrt{\lambda}}{m_{j}(t)+X_{j}(t) / \sqrt{\lambda}}\right] \\
& =\frac{v_{i}(t) v_{j}(t)}{m_{i}(t) m_{j}(t)}+\frac{1}{\lambda} \frac{1}{m_{i}(t) m_{j}(t)} E\left[Y_{i}(t) Y_{j}(t)\right] \tag{4.11}\\
& -\frac{v_{i}(t) v_{i}(t)}{\lambda\left[m_{i}(t) m_{i}(t)\right]^{2}} E\left[X_{i}(t) X_{j}(t)\right]+o\left(\frac{1}{\lambda}\right)
\end{align*}
$$

for $i \neq j$.
Thus,

$$
\begin{align*}
\operatorname{Cov}\left(\hat{r}_{i}(t), \hat{r}_{j}(t)\right) & =\frac{1}{p_{i} p_{j}} \operatorname{Cov}\left(\frac{V_{i}(t)}{N_{i}(t)}, \frac{V_{j}(t)}{N_{j}(t)}\right) \tag{4.12}\\
& \approx \frac{1}{\lambda} \frac{1}{p_{i} m_{i}(t)} \frac{1}{p_{j} m_{j}(t)}\left\{E\left[Y_{i}(t) Y_{j}(t)\right]-r_{i} p_{i} r_{j} p_{j} E\left[X_{i}(t) X_{j}(t)\right]\right\} .
\end{align*}
$$

Expressions (4.10) and (4.12) can be used to approximate $\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right]$.

5. A Simpler Poisson Approximation

Assume the probability of allocation α_{i} is independent of $\left(V_{i}(t), N_{i}(t)\right)$; then the number of looks at node i is a Poisson process with rate $\lambda \alpha_{i}$ independent of the other nodes. Further

$$
\begin{align*}
& E\left[N_{i}(t)\right]=1+\alpha_{i} t \tag{5.1}\\
& E\left[V_{i}(t)\right]=r_{i} p_{i}\left[1+\alpha_{i} t\right] \tag{5.2}\\
& \operatorname{Var}\left[N_{i}(t)\right]=\alpha_{i} t \tag{5.3}\\
& \operatorname{Var}\left[V_{i}(t)\right]=r_{i} p_{i}\left(1-p_{i}\right)+\alpha_{i} t\left[r_{i} p_{i}\left(1-p_{i}\right)+\left(r_{i} p_{i}\right)^{2}\right] \tag{5.4}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Cov}\left[N_{i}(t), V_{i}(t)\right]=r_{i} p_{i} \alpha_{i} t \tag{5.5}
\end{equation*}
$$

where we assume that at time 0 each node is looked at once.
In this case (4.10) becomes

$$
\begin{equation*}
\operatorname{Var}\left[\hat{r}_{i}(t)\right]=\frac{1}{p_{i}^{2}} \frac{r_{i} p_{i}\left(1-p_{i}\right)}{1+\alpha_{i} t} \tag{5.6}
\end{equation*}
$$

and the estimators $\hat{r}_{i}(t)$ are independent.
Assume purposeful allocation is adapted with function h_{i} as in (3.1). A simple approximation to $\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right]$ can be obtained by neglecting all covariances and assuming the number of looks at node $i,\left\{N_{i}(t) ; t \geq 0\right\}$, is a Poisson process with rate $\lambda \alpha_{i}$ where α_{i} is determined by (3.6). In this case

$$
\begin{equation*}
\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right] \approx \sum_{i} \frac{1}{p_{i}} \frac{r_{i}\left(1-p_{i}\right)}{\left(1+\alpha_{i} t\right)} . \tag{5.7}
\end{equation*}
$$

6. Numerical Examples

Suppose there are 3 nodes with r_{j} units on node j with $r_{1}=49, r_{2}=25$, and $r_{3}=16$. The probabilities of detecting a unit on node j, p_{j}, are $p_{1}=1 / 11, p_{2}=0.5$, and $p_{3}=10 / 11$.

The variance of the estimate of the sum of the units on all the nodes under purposeful allocation with h_{i} as in (3.1) was studied using simulation for $\gamma=0,1$, 10. Each replication of the simulation begins with one observation at each node. The times of arrival of a Poisson process with rate 1 are then simulated. A node for observation at time t is randomly chosen using probabilities

$$
\alpha_{i}(t)=K(t)\left[\frac{a_{i}}{N_{i}(t)}+\frac{V_{i}(t)\left(1-p_{i}\right)}{N_{i}(t)^{2} p_{i}^{2}}\right]
$$

for $i=1,2,3$ with $K(t)$ the normalizing constant. A binomial observation is generated for the node chosen. The simulation has 500 replications.

Table 1 records the sample mean and square root of the sample variance of the sum of the estimates $\sum_{i=1}^{3} \hat{r}_{i}(t)$ for $t=5,10,20,50$ where

$$
\hat{r}_{i}(t)=\frac{V_{i}(t)}{N_{i}(t) p_{i}}
$$

Also shown are the sample means of the square root of the sum of estimated approximate variances (1.3)

$$
\hat{\sigma}_{i}^{2}(t)=\frac{V_{i}(t)\left(1-p_{i}\right)}{N_{i}(t)^{2} p_{i}^{2}}
$$

Table 1
Estimate of Total Number of Units on All Nodes

$$
r_{1}=49, r_{2}=25, r_{3}=16 ; p_{1}=1 / 11, p_{2}=0.5, p_{3}=10 / 11
$$

		Simulation			Approximation	
		$\sum_{i} \hat{r}_{i}(t)$		$\sqrt{\sum_{i} \sigma_{i}^{2}(t)}$	Square Root of Differential Equation Approx Variance	Square Root of Poisson Approx Variance
Time	γ	Sample Mean	Square Root of Sample Variance	Sample Mean		
5	0	89.8	18.0	15.0	13.9	13.9
	1	88.1	15.1	10.7	12.3	10.7
	10	89.3	15.2	10.9	12.5	10.4
10	0	90.3	12.4	11.9	10.9	10.9
	1	89.8	9.2	8.2	9.1	8.1
	10	90.1	10.2	8.6	10.2	8.0
20	0	90.0	8.9	8.6	8.2	8.2
	1	89.5	7.1	6.1	6.7	6.0
	10	89.5	8.3	6.5	8.0	6.1
50	0	89.9	5.8	5.5	5.4	5.4
	1	89.9	3.9	3.9	4.2	3.9
	10	89.5	6.2	4.3	5.7	4.2

Table 1 also displays results of the approximate variance $\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right]$ obtained using (4.10) and (4.12) and solving the differential equations (2.8) and the second moment equations in Appendix A, (A.27) - (A.32). The equations were solved numerically using the $4^{\text {th }} / 5^{\text {th }}$ order Runge-Kutta-Fehlberg method as implemented in MATLAB; (cf. Math Works, 1992).

Table 1 also displays the simple Poisson approximation to $\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right]$ of (5.7) with the α_{i} in (3.6).

Recall that the estimate $\operatorname{Var}\left[\sum_{i} \hat{r}_{i}(t)\right]$ is unbiased for both approximations. The true value of $\sum r_{i}$ is 90 . The differential equation approximation is close to the square root of the sample variance for all values of γ for times 10,20 , and 50 . The Poisson approximation is close to the square root of the sum of the estimated approximate variances; both of these approximations are neglecting the covariances induced by the purposeful allocation; these covariances become more pronounced as γ becomes larger. There is no covariance for $\gamma=0$, equally likely allocation. Note that the Poisson approximation is conservative. However for $\gamma=1$, the Poisson approximation is within about 10% of the differential equation approximation which incorporates the covariances. However the difference is larger for $\gamma=10$.

Note that the square root of the sample variance and the differential equation approximation suggest that purposeful allocation with $\gamma=1$ yields the smallest variance of the estimated sum of the numbers of units on all the nodes. A rationale for this suggestion follows.

Suppose there are a fixed number of looks K that the sensor can take of all nodes and the number of units on each node i, r_{i} is known along with the
probability of detecting a unit on node i, p_{i}. Let k_{i} be the number of looks the sensor gives to node i. If each observation has a binomial distribution

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{3} \hat{r}_{i}(t)\right] & =\sum_{i=1}^{3} \frac{k_{i} r_{i} p_{i}\left(1-p_{i}\right)}{k_{i}^{2} p_{i}^{2}} \\
& =\sum_{i=1}^{3} \frac{r_{i}\left(1-p_{i}\right)}{k_{i} p_{i}} .
\end{aligned}
$$

Lagrange multipliers can be used to show that the (approximate) $k_{i}, i=1,2,3$ that minimize $\operatorname{Var}\left[\sum_{i=1}^{3} \hat{r}_{i}(t)\right]$ are $k_{i}=\left[r_{i}\left(1-p_{i}\right) / p_{i}\right]^{\frac{1}{2}}$. This solution corresponds to the α_{i} of (3.6) with $a_{i}=0$ and $\gamma=1$. Thus, if one is interested in minimizing the estimated variance of the sum of the number of units on all the nodes, then one should look at node i a number of times proportional to $\left[r_{i}\left(1-p_{i}\right) / p_{i}\right]^{0.5}$. If one were interested in minimizing the estimated variance of the estimate of the number of units on the node with the greatest number of units then one would allocate all looks to that node; this corresponds to the purposeful allocation policy of $\gamma=\infty$.

Tables 2 and 3 present results of the simulation experiment with $r_{1}=49$, $r_{2}=25, r_{3}=16$ and $p_{1}=0.7, p_{2}=0.8$, and $p_{3}=0.9$. Table 2 presents the simulation and approximation results for the estimate of the sum of units on all the nodes. Table 3 presents the simulation and approximation results for the number of units on the individual nodes. The differential equation results are close to the simulated values for times $t=10,20,50$. The Poisson approximation also seems to be adequate. The Poisson approximation may be doing better in this case because the probabilities of unit detection are larger. One source of the covariance between the estimators $\hat{r}_{i}(t)$ is the possibility that $V(i, t)$ may be 0 , in
which case node i will not be visited very frequently for $\gamma>0$ for the purposeful allocation with function h_{i} as in (3.1).

Table 2
Estimate of Total Number of Units on All Nodes

$$
r_{1}=49, r_{2}=25, r_{3}=16 ; p_{1}=0.7, p_{2}=0.8, p_{3}=0.9
$$

		Simulation			Approximation	
		$\sum_{i} \hat{r}_{i}(t)$		$\sqrt{\sum_{i} \sigma_{i}^{2}(t)}$	Square Root of Differential Equation Approx Variance	Square Root of Poisson Approx Variance
Time	γ	Sample Mean	Square Root of Sample Variance	Sample Mean		
5	0	89.9	5.52	3.70	3.30	3.30
	1	89.4	6.53	3.15	3.11	3.02
	10	88.9	8.55	3.14	3.06	2.98
10	0	90.1	2.75	2.84	2.59	2.59
	1	89.9	2.37	2.45	2.46	2.35
	10	89.7	2.46	2.53	2.51	2.35
20	0	90.1	2.04	2.07	1.95	1.95
	1	90.0	1.72	1.80	1.90	1.76
	10	89.9	1.87	1.88	2.06	1.80
50	0	90.0	1.30	1.32	1.28	1.28
	1	90.0	1.12	1.17	1.29	1.16
	10	89.9	1.26	1.24	1.35	1.21

（L9＊0）	（99．0）		（0L0）	（ZL．0）		（LL＊）	（9L0）			
G900	LLO0	0．91	てく0	てく0	$6{ }^{\circ} \mathrm{Z}$	$\angle L 0$	$L L^{\circ} 0$	067	0L	
（\％70）	（G70）		（E90）	（8900）		（98．0）	（980）			
$97^{\circ} 0$	Sb0	0．91	¢900	も900		98°	88°	$0 \cdot 67$	I	
（て，0）	（てE＊0）		（69．0）	（69．0）		（ $60^{\circ} \mathrm{L}$ ）	（60́）			
てと＊	عと0	0．91	190	ع9＊0	0 GZ	てI＇L	80́．	［＇67	0	OS
（780）	（00＇1）		（G0．1）	（80．${ }^{\text {）}}$		（6I＇L）	（SI＇L）			
S60	90° L	$6 \cdot 91$	01＇I	80 ${ }^{\circ}$	6\％て	6I＇L	91＇L	$0 \cdot 67$	OL	
（G9＊0）	（8900）		（G60）	（960）		（E¢＇L）	（0¢＇I）			
L＇00	LC゚0	0．91	86.0	$\angle 6.0$	$6{ }^{\circ}$	てと＇L	てE＇L	067	L	
（870）	（870）		（060）	（060）		（99 ${ }^{\circ}$ ）	（99＊${ }^{\text {¢ }}$ ）			
09．0	ZS．0	0．91	G60	86.0	$0 \times \mathcal{L}$	SL＇L	89 ${ }^{\circ}$ L	L’63	0	02
（00＇I）	（6て＇L）		（ $2 E^{\prime} \cdot 1$ ）	（ $\square^{\circ} \mathrm{L}$ ）		（E9＇1）	（ES＇I）			
92＇L	\＆と＇	6．91	87＇L	09＇L	672	［9 ${ }^{\circ}$ L	LS＇L	687	0L	
（28．0）	（68．0）		（GZ＇I）	（LZ＇I）		（L8．${ }^{\text {\％}}$	（7L＇I）			
E60	960	0．91	てと＇	9¢＇L	672	［8＇L	L8． 1	067	L	
（79＊0）	（790）		（0て＇I）	（02＇L）		（02＇Z）	（0̌＇Z）			
89°	LL＇0	0．91	$0 \mathrm{E}^{\prime} \mathrm{I}$	9 ε^{\prime} L	0 ¢ $¢$	$6 \varepsilon^{\circ}$ て	とと＇乙	［ 67	0	0I
（EL｀I）	（E¢＇I）		（0L＇I）	（88＇L）		（LI＇Z）	（00Z）			
て¢＇	L6＇	8．91	68° I	$76^{\circ} \mathrm{Z}$	9＇も己	てL｀て	98\％	9＊8	OL	
（66\％）	（ $20^{\circ} \mathrm{I}$ ）		（69＇I）	（29 ${ }^{\text {² }}$ ）		（8E＇Z）	（ $\angle \chi^{\prime} \mathrm{C}$ ）			
\＆1＇L	殒［	0．91	69° I	$8 \varepsilon^{\circ}$ Z	8「で	LE＇Z	G6 ${ }^{\circ}$	988	L	
（28．0）	（280）		（ES＇I）	（ $\varepsilon S^{\prime} \mathrm{L}$ ）		（L8＇Z）	（L8 ${ }^{\circ}$ ）			
$\angle 8^{\circ}$	LI＇L	0991	89° I	$0 て ゙ て$	6\％て	L［＇$¢$	$68^{\circ} \mathrm{E}$	$0 \cdot 67$	0	S
（xoadd F uossiod） ueaw әdures	（xoIddy üb马 щ！व） วЈuе！̣е Λ əןdures $100 y$ ว．enbs	uеวN	（xoadd V uossiod） urəw әјdues	（xoIddV ubg \＃！a） әЈие！ฺe әரdues 100y ajenbs	ueəw	（xoaddv uossiod） uとว әdures	（xoIddV ubG щ！व） วЈuе！．土ム Λ әduues 100y ərenbs	uеวN	λ	วu！
（7）${ }^{2} 01$	（7）${ }^{\text {！}}$		（7）${ }_{2}^{1} 0{ }^{1}$	（7）！${ }^{\text {！}}$		$\text { (} 1 \text {) } i_{i}^{1} 0$	（7）${ }^{\text {！}}$			
E Jpon			乙 刀pon			L PpoN				
əpon uo st！un 10 дəquinn 10 әłem！！s ε ə $1 \mathrm{qe} \perp$										

REFERENCES

P. J. Bickel and K. A. Doksum, "Mathematical Statistics: Basic Ideas and Selected Topics," Holden-Day, Inc., San Francisco, CA, 1977.
D. P. Gaver and P. A. Jacobs, "Asymptotic properties of stochastic greedy binpacking," Stochastic Models, 11 (1995) pp. 333-348.
D. P. Gaver, J. A. Morrison, and R. Silveira, "Service-adaptive multitype repairman problems," SIAM J. Appl. Math., 53 (1993) pp. 454-470.
P. Hall, "On the erratic behavior of estimators of N in the binomial N, p distribution," Journal of the American Statistical Association, 89 (1994) pp. 344-352.

The Math Works, Inc., MATLAB Reference Guide, The Math Works, Inc., Natick, MA, August 1992.
S. K. Thompson, and G. A. F. Seber, "Detectability in conventional and adaptive sampling," Biometrics, 50 (1994) pp. 712-725.

APPENDIX A

In the Appendix we present details of the normal approximation. We follow an analytical approach used in a different context in Gaver and Jacobs (1995), and in Gaver, Morrison, and Silveira (1993). Let the moment-generating function (assumed to exist, otherwise use the characteristic function) be

$$
\begin{align*}
\psi(\theta, \xi ; t) & =E[\exp \{\theta N(t)+\xi V(t)\}] \\
& =E\left[\exp \left\{\sum_{j=1}^{I} \theta_{j} N_{j}(t)+\sum_{j=1}^{I} \xi_{j} V_{j}(t)\right\}\right] . \tag{A.1}
\end{align*}
$$

Condition on $\left(N_{i}(t), V_{i}(t)\right), i \in\{1,2, \ldots, I\}$ to obtain

$$
\begin{align*}
& E\left[\exp \left\{\sum_{j=1}^{I} \theta_{j} N_{j}(t+h)+\xi_{j} V_{j}(t+h)\right\} N(t), V(t)\right] \\
& =(1-\lambda h) \exp \{\theta N(t)+\xi V(t)\} \tag{A.2}\\
& +\lambda h \sum_{i} \alpha_{i}(N(t), V(t)) \exp \{\theta N(t)+\xi V(t)\}\left[e^{\theta_{i}} \hat{b}\left(\xi_{i}\right)\right]
\end{align*}
$$

where

$$
\begin{equation*}
\hat{b}\left(\xi_{i}\right)=E\left[e^{\xi_{i} Z(i)}\right] . \tag{A.3}
\end{equation*}
$$

with $\mathbf{Z}(i)$ an observation of the number of units on node i.
Let $h \rightarrow 0$ to obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi(\theta, \xi ; t)=-\lambda \psi(\theta, \xi ; t)+\lambda \sum_{i=1}^{I} E\left[\alpha_{i}(N(t), V(t)) \exp \{\theta N(t)+\boldsymbol{\xi} V(t)\} e^{\theta_{i}} \hat{b}\left(\xi_{i}\right)\right] \tag{A.4}
\end{equation*}
$$

Scaling

Let

$$
\begin{equation*}
X_{j}(t)=\frac{N_{j}(t)-\lambda m_{j}(t)}{\sqrt{\lambda}} \tag{A.5}
\end{equation*}
$$

$$
\begin{equation*}
Y_{j}(t)=\frac{V_{j}(t)-\lambda v_{j}(t)}{\sqrt{\lambda}} \tag{A.6}
\end{equation*}
$$

and let $\lambda » 1$.
Let

$$
\begin{equation*}
\varphi(\theta, \xi ; t)=E[\exp \{\theta X(t)+\xi Y(t)\}] ; \tag{A.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\psi(\theta / \sqrt{\lambda}, \xi / \sqrt{\lambda} ; t)=\varphi(\theta, \xi ; t) \exp \{\sqrt{\lambda}[\theta m(t)+\xi v(t)]\} . \tag{A.8}
\end{equation*}
$$

Thus, we have the following equation from (A.8) and (A.4)

$$
\begin{aligned}
& \frac{\partial}{\partial t} \psi(\theta / \sqrt{\lambda}, \xi / \sqrt{\lambda} ; t) \\
& =\frac{\partial}{\partial t} \varphi(\theta, \xi ; t) \exp \{\sqrt{\lambda}[\theta m(t)+\xi 0(t)]\} \\
& +\sqrt{\lambda} \varphi(\theta, \xi ; t) \exp \{\sqrt{\lambda}[\theta m(t)+\xi 0(t)]\}\left[\theta m^{\prime}(t)+\xi^{\prime}(t)\right] \\
& =[-\lambda \varphi(\theta, \xi ; t) \\
& \left.+\lambda \sum_{i=1}^{I} E\left[\alpha_{i}\left(m(t)+\frac{1}{\sqrt{\lambda}} X(t), v(t)+\frac{1}{\sqrt{\lambda}} Y(t)\right) \exp \{\theta X(t)+\xi Y(t)\}\right] e^{\theta_{i}} / \sqrt{\lambda} \hat{b}_{i}\left(\xi_{i} / \sqrt{\lambda}\right)\right] \\
& \times \exp \{\sqrt{\lambda}[\theta m(t)+\xi 0(t)]\} .
\end{aligned}
$$

Dividing both sides by $\exp \{\sqrt{\lambda}[\theta m(t)+\xi v(t)]\}$ we obtain

$$
\begin{align*}
& \frac{\partial}{\partial t} \varphi(\theta, \xi ; t)+\sqrt{\lambda} \varphi(\theta, \xi ; t)\left[\theta m^{\prime}(t)+\xi v^{\prime}(t)\right] \\
& =-\lambda \varphi(\theta, \xi ; t) \\
& +\lambda \sum_{i=1}^{I} E\left[\left\{\alpha_{i}(m(t), v(t))+\sum_{j} \frac{\partial}{\partial m_{j}} \alpha_{i}(m(t), v(t)) \frac{1}{\sqrt{\lambda}} X_{j}(t)\right.\right. \tag{A.10}
\end{align*}
$$

$$
\left.\left.+\sum_{j} \frac{\partial}{\partial \beta_{j}} \alpha_{i}(m(t), v(t)) \frac{1}{\sqrt{\lambda}} Y_{j}(t)+O\left(\frac{1}{\sqrt{\lambda}}\right)\right\} \exp \{\theta X(t)+\xi Y(t)\}\right] e^{\theta_{i} / \sqrt{\lambda}} \hat{b}_{i}\left(\xi_{i} / \sqrt{\lambda}\right)
$$

Let

$$
\begin{equation*}
\alpha_{i}(m(t), v(t))=\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \tag{A.11}
\end{equation*}
$$

where $h_{j}(x, y)$ is a sufficiently smooth function with first order partial derivatives and $h_{j}\left(\lambda^{p} x, \lambda^{p} y\right)=\lambda^{p} h_{j}(x, y)$.

Let

$$
\begin{gather*}
H_{i}(x ; t)=\frac{\frac{\partial}{\partial m_{i}} h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \tag{A.12}\\
H_{i}(y ; t)=\frac{\frac{\partial}{\partial v_{i}} h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \tag{A.13}\\
H_{i k}(x ; t)=\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\left(\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)\right)^{2}} \frac{\partial}{\partial m_{k}} h_{k}\left(m_{k}(t), v_{k}(t)\right) \tag{A.14}\\
H_{i k}(y ; t)=\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\left(\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)\right)^{2}} \frac{\partial}{\partial v_{k}} h_{k}\left(m_{k}(t), v_{k}(t)\right) \tag{A.15}
\end{gather*}
$$

Note that

$$
\begin{align*}
& \alpha_{i}\left(\lambda m_{i}(t)+\sqrt{\lambda} X_{i}(t), \lambda v_{i}(t)+\sqrt{\lambda} Y_{i}(t)\right) \\
& =\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j=1}^{I} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \tag{A.16}\\
& +\frac{1}{\sqrt{\lambda}}\left[H_{i}(x ; t) X_{i}(t)+H_{i}(y ; t) Y_{i}(t)+\sum_{k} H_{i k}(x ; t) X_{k}(t)+\sum_{k} H_{i k}(y ; t) Y_{k}(t)\right]+O\left(\frac{1}{\lambda}\right) .
\end{align*}
$$

$$
\begin{equation*}
\sum_{i} \alpha_{i}\left(\lambda m_{i}(t)+\sqrt{\lambda} X_{i}(t), \lambda v_{i}(t)+\sqrt{\lambda} Y_{i}(t)\right)=1 \tag{A.17}
\end{equation*}
$$

this implies that the summed coefficients of $1 / \sqrt{\lambda}, 1 / \lambda$ etc. must individually be 0.

Expression (A.10) can be rewritten as

$$
\begin{align*}
& \frac{\partial}{\partial t} \varphi(\theta, \xi ; t)+\sqrt{\lambda} \varphi(\theta, \xi ; t)\left[\theta m^{\prime}(t)+\xi^{\prime}(t)\right] \\
& =-\lambda \varphi(\theta, \xi ; t) \\
& +\lambda \sum_{i}\left[1+\frac{\theta_{i}}{\sqrt{\lambda}}+\frac{b_{1}(i) \xi_{i}}{\sqrt{\lambda}}+\frac{1}{2} \frac{\theta_{i}^{2}}{\lambda}+\frac{1}{2} \frac{b_{2}(i) \xi_{i}^{2}}{\lambda}\right] \\
& \times\left\{\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \varphi(\theta, \xi ; t)\right. \\
& +\frac{1}{\sqrt{\lambda}}\left[H_{i}(x ; t) \frac{\partial}{\partial \theta_{i}} \varphi(\theta, \xi ; t)+H_{i}(y ; t) \frac{\partial}{\partial \xi_{i}} \varphi(\theta, \xi ; t)\right. \\
& \left.-\sum_{k=1}^{I}\left[H_{i k}(x ; t) \frac{\partial}{\partial \theta_{k}} \varphi(\theta, \xi ; t)+H_{i k}(y ; t) \frac{\partial}{\partial \xi_{k}} \varphi(\theta, \xi ; t)\right]\right]+O\left(\frac{1}{\lambda}\right) \tag{A.18}\\
& \quad-
\end{align*}
$$

where $b_{n}(i)=E\left[Z(i)^{n}\right]$ the $n^{\text {th }}$ moment of an observation at node i.

Let

$$
\begin{equation*}
\varphi(\theta, \xi ; t)=\sum_{\ell=0}^{\infty} \varphi_{\ell}(\theta, \xi ; t) \lambda^{-\ell / 2} \tag{A.19}
\end{equation*}
$$

Substituting (A.19) into (A.18) results in the following equation for φ_{0}

$$
\begin{align*}
& \frac{\partial}{\partial t} \varphi_{0}(\theta, \xi ; t)+\sqrt{\lambda} \varphi_{0}(\theta, \xi ; t)\left[\theta m^{\prime}(t)+\xi v^{\prime}(t)\right] \\
& =-\lambda \varphi_{0}(\theta, \xi ; t) \\
& +\lambda \sum_{i}\left[1+\frac{1}{\sqrt{\lambda}}\left(\theta_{i}+b_{1}(i) \xi_{i}\right)+\frac{1}{2} \frac{1}{\lambda}\left(\theta_{i}^{2}+b_{2}(i) \xi_{i}^{2}\right)\right] \\
& \times\left\{\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \varphi_{0}(\theta, \xi ; t)\right. \\
& +\frac{1}{\sqrt{\lambda}}\left[H_{i}(x ; t) \frac{\partial}{\partial \theta_{i}} \varphi_{0}(\theta, \xi ; t)+H_{i}(y ; t) \frac{\partial}{\partial \xi_{i}} \varphi_{0}(\theta, \xi ; t)\right. \\
& \left.\left.-\sum_{k=1}^{I}\left[H_{i k}(x ; t) \frac{\partial}{\partial \theta_{k}} \varphi_{0}(\theta, \xi ; t)+H_{i k}(y ; t) \frac{\partial}{\partial \xi_{k}} \varphi_{0}(\theta, \xi ; t)\right]\right]\right\}+O\left(\frac{1}{\lambda}\right) . \tag{A.20}
\end{align*}
$$

Equating terms of order $\lambda^{\ell / 2}$, the terms of order λ cancel. The terms of order $\sqrt{\lambda}$ result in the equation

$$
\begin{align*}
& \varphi_{0}(\theta, \xi ; t)\left[\theta m^{\prime}(t)+\xi^{\prime}(t)\right] \\
& =\sum_{i=1}^{I}\left\{\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \varphi_{0}(\theta, \xi ; t)\left[\theta_{i}+b_{1}(i) \xi_{i}\right]\right. \\
& +H_{i}(x ; t) \frac{\partial}{\partial \theta_{i}} \varphi_{0}(\theta, \xi ; t)+H_{i}(y ; t) \frac{\partial}{\partial \xi_{i}} \varphi_{0}(\theta, \xi ; t) \\
& \left.+\sum_{k=1}^{I}\left[H_{i k}(x ; t) \frac{\partial}{\partial \theta_{k}} \varphi_{0}(\theta, \xi ; t)+H_{i k}(y ; t) \frac{\partial}{\partial \xi_{k}} \varphi_{0}(\theta, \xi ; t)\right]\right\}+O\left(\frac{1}{\lambda}\right) . \tag{A.21}
\end{align*}
$$

The terms of order $\sqrt{\lambda}$ cancel if

$$
\begin{equation*}
\boldsymbol{\theta} m^{\prime}(t)+\xi v^{\prime}(t)=\sum_{i=1}^{I} \frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)}\left[\theta_{i}+b_{1}(i) \xi_{i}\right] . \tag{A.22}
\end{equation*}
$$

In order for this to occur

$$
\begin{equation*}
\frac{d}{d t} m_{i}(t)=\frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \quad i=1, \ldots I \tag{A.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} v_{i}(t)=b_{1}(i) \frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} \quad i=1, \ldots I . \tag{A.24}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
v_{i}(t)=b_{1}(i) m_{i}(t) . \tag{A.25}
\end{equation*}
$$

Next look for terms of order 1 in (A.20).

$$
\begin{align*}
& \frac{\partial}{\partial t} \varphi_{0}(\theta, \xi ; t) \\
& =\sum_{i} \frac{h_{i}\left(m_{i}(t), v_{i}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)}\left[\frac{1}{2} \theta_{i}^{2}+\frac{1}{2} b_{2}(i) \xi_{i}^{2}+b_{1}(i) \theta_{i} \xi_{i}\right] \varphi_{0}(\theta, \xi ; t) \\
& +\sum_{i}\left[H_{i}(x ; t) \frac{\partial}{\partial \theta_{i}} \varphi_{0}(\theta, \xi ; t)+H_{i}(y ; t) \frac{\partial}{\partial \xi_{i}} \varphi_{0}(\theta, \xi ; t)\right]\left[\theta_{i}+b_{1}(i) \xi_{i}\right] \tag{A.26}\\
& +\sum_{i} \sum_{k}\left[H_{i k}(x ; t) \frac{\partial}{\partial \theta_{k}} \varphi_{0}(\theta, \xi ; t)+H_{i k}(y ; t) \frac{\partial}{\partial \xi_{k}} \varphi_{0}(\theta, \xi ; t)\right]\left[\theta_{i}+b_{1}(i) \xi_{i}\right]
\end{align*}
$$

Equations for the joint moments of $\left\{\left(X_{j}(t), Y_{j}(t)\right\}\right.$ can be obtained by differentiating (A.26) with respect to $\left\{\theta_{i}\right\}$ and $\left\{\xi_{i}\right\}$ and evaluated at $\boldsymbol{\theta}=\boldsymbol{\xi}=0$. The resulting equations are

$$
\begin{aligned}
& \frac{d}{d t} E\left[X_{\ell}^{2}(t)\right] \\
& =\frac{h\left(m_{\ell}(t), v_{\ell}(t)\right)}{\sum_{j} h\left(m_{j}(t), v_{j}(t)\right)}+2 H_{\ell}(x ; t) E\left[X_{\ell}(t)^{2}\right]+2 H_{\ell}(y ; t) E\left[X_{\ell}(t) Y_{\ell}(t)\right] \\
& +2 \sum_{k} H_{\ell k}(x ; t) E\left[X_{\ell}(t) X_{k}(t)\right]+2 \sum_{k} H_{\ell k}(y ; t) E\left[X_{\ell}(t) Y_{k}(t)\right]
\end{aligned}
$$

For $\ell \neq a$

$$
\begin{align*}
& \frac{d}{d t} E\left[X_{\ell}(t) X_{a}(t)\right] \\
& =H_{a}(x ; t) E\left[X_{a}(t) X_{\ell}(t)\right]+H_{a}(y ; t) E\left[Y_{a}(t) X_{\ell}(t)\right] \\
& +H_{\ell}\left(x_{i}\right) E\left[X_{a}(t) X_{\ell}(t)\right]+H_{\ell}\left(y_{i}\right) E\left[X_{a}(t) Y_{\ell}(t)\right] \\
& +\sum_{k} H_{a k}(x ; t) E\left[X_{k}(t) X_{\ell}(t)\right]+\sum_{k} H_{a k}(y ; t) E\left[X_{\ell}(t) Y_{k}(t)\right] \tag{A.28}\\
& +\sum_{k} H_{\ell k}(x ; t) E\left[X_{a}(t) X_{k}(t)\right]+\sum_{k} H_{\ell k}(y ; t) E\left[X_{a}(t) Y_{k}(t)\right] . \\
& \frac{d}{d t} E\left[\gamma_{\ell}^{2}(t)\right]=\frac{h\left(m_{\ell}(t), v_{\ell}(t)\right)}{\sum_{j} h\left(m_{j}(t), v_{j}(t)\right)} b_{2}(\ell) \\
& +2 b_{1}(\ell)\left[H_{\ell}(x ; t) E\left[X_{\ell}(t) Y_{\ell}(t)\right]+H_{\ell}(y ; t) E\left[Y_{\ell}^{2}(t)\right]\right] \tag{A.29}\\
& +2 b_{1}(\ell) \sum_{j} H_{\ell j}(x ; t) E\left[X_{j}(t) Y_{\ell}(t)\right]+H_{\ell j}(y ; t) E\left[Y_{\ell}(t) Y_{j}(t)\right]
\end{align*}
$$

For $j \neq k$

$$
\begin{align*}
& \frac{d}{d t} E\left[Y_{k}(t) Y_{j}(t)\right] \\
& =\left\{H_{j}(x ; t) E\left[X_{j}(t) Y_{k}(t)\right]+H_{j}(y ; t) E\left[Y_{j}(t) Y_{k}(t)\right]\right\} b_{1}(j) \\
& +\left\{H_{k}(x ; t) E\left[X_{k}(t) Y_{j}(t)\right]+H_{k}(y ; t) E\left[Y_{j}(t) Y_{k}(t)\right]\right\} b_{1}(k) \\
& +b_{1}(j) \sum_{\ell} H_{j \ell}(x ; t) E\left[X_{\ell}(t) Y_{k}(t)\right]+H_{j \ell}(y ; t) E\left[Y_{k}(t) Y_{\ell}(t)\right] \tag{A.30}\\
& +b_{1}(k) \sum_{\ell} H_{k \ell}(x ; t) E\left[X_{\ell}(t) Y_{j}(t)\right]+H_{k \ell}(y ; t) E\left[Y_{\ell}(t) Y_{j}(t)\right] \\
& \frac{d}{d t} E\left[X_{k}(t) Y_{k}(t)\right] \\
& =\frac{h_{k}\left(m_{k}(t), v_{k}(t)\right)}{\sum_{j} h_{j}\left(m_{j}(t), v_{j}(t)\right)} b_{1}(k) \\
& +H_{k}(x ; t)\left\{E\left[Y_{k}(t) X_{k}(t)\right]+E\left[X_{k}^{2}(t)\right] b_{1}(k)\right\} \\
& +H_{k}(y ; t)\left[E\left[Y_{k}^{2}(t)\right]+E\left[X_{k}(t) Y_{k}(t)\right] b_{1}(k)\right] \\
& +\sum_{j}\left\{H_{k j}(x ; t) E\left[X_{j}(t) Y_{k}(t)\right]+H_{k j}(y ; t) E\left[Y_{k}(t) Y_{j}(t)\right]\right\} \tag{A.31}\\
& +\sum_{j}\left\{H_{k j}(x ; t) E\left[X_{j}(t) X_{k}(t)\right]+H_{k j}(y ; t) E\left[X_{k}(t) Y_{j}(t)\right]\right\}_{b_{1}}(k)
\end{align*}
$$

For $\ell \neq k$

$$
\begin{align*}
& \frac{d}{d t} E\left[X_{\ell}(t) Y_{k}(t)\right] \\
& =H_{\ell}(x ; t) E\left[X_{\ell}(t) Y_{k}(t)\right]+H_{\ell}(y ; t) E\left[Y_{\ell}(t) Y_{k}(t)\right] \\
& +\left\{H_{k}(x ; t) E\left[X_{\ell}(t) X_{k}(t)\right]+H_{k}(y ; t) E\left[X_{\ell}(t) Y_{k}(t)\right]\right\} b_{1}(k) \\
& +\sum_{j} H_{\ell j}(x ; t) E\left[X_{j}(t) Y_{k}(t)\right]+H_{\ell j}(y ; t) E\left[Y_{k}(t) Y_{j}(t)\right] \tag{A.32}\\
& \left.+\sum_{j}\left\{H_{k j}(x ; t) E\left[X_{j}(t) X_{\ell}(t)\right]+H_{k j}(y ; t) E\left[Y_{j}(t) X_{\ell}(t)\right]\right]\right\}_{1}(k)
\end{align*}
$$

INITIAL DISTRIBUTION LIST

1. Research Office (Code 08) 1
Naval Postgraduate School
Monterey, CA 93943-5000
2. Dudley Knox Library (Code 52) 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314
4. Director, Force Structure, Resources and Assessment (J-8) 2
8000 The Joint Staff
Washington, DC 20310-8000
5. Deputy Director for Technical Operations, J-8 1
8000 The Joint Staff
Washington, DC 20310-8000
6. Chief, Warfare Analysis Division, J-8 1
8000 The Joint Staff
Washington, DC 20310-8000
7. Prof. Donald P. Gaver (Code OR/Gv) 10
Naval Postgraduate School
Monterey, CA 93943-5000
8. Prof. Patricia A. Jacobs (Code OR/Jc) 5
Naval Postgraduate School
Monterey, CA 93943-5000
9. Prof. Mark Youngren (Code OR/Ym) 5
Naval Postgraduate School
Monterey, CA 93943-5000
10. Prof. George Connor (Code OR/Co) 1
Naval Postgraduate School
Monterey, CA 93943-5000
11. Prof. Michael Sovereign (Code OR/Sm) 1
Naval Postgraduate School
Monterey, CA 93943-5000
12. Ms. Therese Bilodeau (Code OR/Bi) 1
Naval Postgraduate School
Monterey, CA 93943-5000
13. Dr. J. Abrahams, Code 1111, Room 607 1
Mathematical Sciences Division, Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
14. Dr. John Bailar 1
468 N St. NW
Washington, DC 20024
15. Prof. D. R. Barr 1
Dept. of Systems Engineering U.S. Military Academy
West Point, NY 10996
16. Dr. David Brillinger 1
Statistics Department
University of California
Berkeley, CA 94720
17. Dr. David Burman 1
AT\&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
18. Prof. Brad Carlin 1
School of Public Health
University of Minnesota
Mayo Bldg. A460
Minneapolis, MN 55455
19. Dr. Robert Carpenter 1
NAMRI/Navy Toxicology Detachment
Bldg. 433, Area B
Wright-Patterson AFB, OH 45433-6503
20. Center for Naval Analyses 1
4401 Ford Avenue
Alexandria, VA 22302-0268
21. Prof. H. Chernoff 1
Department of Statistics
Harvard University
1 Oxford Street
Cambridge, MA 02138
22. Mr. Wm. P. Clay 1
Director, USAMSAA
Attn: AMXSY-CA
APG, MD 21005-5071
23. Dr. Edward G. Coffman, Jr. 1
AT\&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
24. Dr. John Copas 1
Dept. of Mathematics,
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND
25. Professor Sir David Cox 1
Nuffield College
Oxford, OXI INF
ENGLAND
26. Professor H. G. Daellenbach 1
Department of Operations Research University of Canterbury
Christchurch, NEW ZEALAND
27. Dr. S. R. Dalal 1
Bellcore
445 South Street
Morristown, NJ 07962-1910
28. Dr. D. F. Daley 1
Statistic Dept. (I.A.S.)
Australian National University Canberra, A.C.T. 2606
AUSTRALIA
29. Dr. B. Doshi 1
AT\&T Bell Laboratories HO 3M-335
Holmdel, NJ 07733
30. Dr. Naihua Duan 1
RAND Corporation
Santa Monica, CA 90406
31. Prof. Bradley Efron 1
Statistics Dept.
Sequoia Hall
Stanford University
Stanford, CA 94305
32. Dr. Guy Fayolle 1
I.N.R.I.A.
Dom de Voluceau-Rocquencourt 78150 Le Chesnay Cedex
FRANCE
33. Dr. Andrew Gelman 1
Statistics Dept.
University of California
Berkeley, CA 94720
34. Dr. Neil Gerr 1
Office of Naval Research
Arlington, VA 22217
35. Prof. Peter Glynn 1
Dept. of Operations Research
Stanford University
Stanford, CA 94350
36. Prof. Bernard Harris 1
Dept. of Statistics
University of Wisconsin
610 Walnut Street
Madison, WI 53706
37. Prof. J. Michael Harrison 1
Graduate School of Business
Stanford University
Stanford, CA 94305-5015
38. Dr. P. Heidelberger 1
IBM Research Laboratory
Yorktown Heights
New York, NY 10598
39. Dr. D. C. Hoaglin 1
Department of Statistics
Harvard University
1 Oxford Street
Cambridge, MA 02138
40. Prof. D. L. Iglehart 1
Dept. of Operations Research
Stanford University
Stanford, CA 94350
41. Institute for Defense Analysis 1
1800 North Beauregard
Alexandria, VA 22311
42. Prof. J. B. Kadane 1
Dept. of Statistics
Camegie-Mellon University
Pittsburgh, PA 15213
43. Dr. F. P. Kelly 1
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND
44. Dr. Jon Kettenring 1
Bellcore
445 South Street
Morris Township, NJ 07962-1910
45. Koh Peng Kong 1
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
SINGAPORE 1024
46. Prof. Guy Latouche 1
University Libre Bruxelles
C.P. 212, Blvd. De Triomphe
B-1050 Bruxelles
BELGIUM
47. Dr. A. J. Lawrance 1
Dept. of Mathematics,
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND
48. Prof. M. Leadbetter 1
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514
49. Prof. J. Lehoczky 1
Department of Statistics
Carnegie-Mellon University Pittsburgh, PA 15213
50. Dr. James R. Maar 1
National Security Agency
9608 Basket Ring
Columbia, MD 21045-0689
51. Dr. Colin Mallows 1
AT\&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
52. Prof. R. Douglas Martin 1
Department of Statistics, GN-22
University of Washington
Seattle, WA 98195
53. Prof. M. Mazumdar 1
Dept. of Industrial Engineering
University of Pittsburgh
Pittsburgh, PA 15235
54. Dr. James McKenna 1
Bell Communications Research 445 South Street
Morristown, NJ 07960-1910
55. Prof. Paul Moose
C3I Academic Group
Naval Postgraudate School
Monterey, CA 93943-5000
56. Prof. Carl N. Morris 1
Statistics Department
Harvard University
1 Oxford St.
Cambridge, MA 02138
57. Dr. John A. Morrison 1
AT\&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
58. Prof. F. W. Mosteller 1
Department of Statistics
Harvard University
1 Oxford St.
Cambridge, MA 02138
59. Operations Research Center, Rm E40-164 1
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro
Cambridge, MA 02139
60. Dr. T. J. Ott 1
Bellcore,
445 South Street
Morristown, NJ 07962-1910
(MRE 2P388)
61. Dr. Jim Petty 1
National Biological Survey
4200 New Haven Road
Columbia, MO 65201
62. Dr. V. Ramaswami 1
MRE 2Q-358
Bell Communications Research, Inc.
445 South Street
Morristown, NJ 07960
63. Dr. Martin Reiman 1
Rm \#2C-117
AT\&T Bell labs
600 Mountain Ave.
Murray Hill, NJ 07974-2040
64. Prof. Maria Rieders 1
Dept. of Industrial Eng.
Northwestern Univ.
Evanston, IL 60208
65. Dr. Rhonda Righter 1
Dept. of Decision \& Info. Sciences
Santa Clara University
Santa Clara, CA 95118
66. Dr. John E. Rolph 1
RAND Corporation
1700 Main St.
Santa Monica, CA 90406
67. Prof. Frank Samaniego 1
Statistics Department
University of California
Davis, CA 95616
68. Prof. W. R. Schucany 1
Dept. of Statistics
Southern Methodist University
Dallas, TX 75222
69. Prof. G. A. F. Seber 1
Dept. of Statistics
Univ. of Auckland
Private Bag 92019
Auckland, NEW ZEALAND
70. Prof. G. Shantikumar 1
The Management Science Group
School of Business Administration
University of California
Berkeley, CA 94720
71. Prof. D. C. Siegmund 1
Dept. of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305
72. Prof. N. D. Singpurwalla 1
George Washington University
Washington, DC 20052
73. Prof. H. Solomon 1
Department of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305
74. Dr. Andrew Solow 1
Woods Hole Oceanographic Institute Woods Hole, MA 02543
75. Prof. W. Stuetzle 1
Department of Statistics
University of Washington
Seattle, WA 98195
76. Prof. J. R. Thompson1
Dept. of Mathematical Science
Rice University
Houston, TX 77001
77. Prof. Steven K. Thompson 1
Statistics Dept.
Pennsylvania State Univ.
326 Classroom Bldg.
University Park, PA 16802-2111
78. Prof. J. W. Tukey 1
Statistics Dept., Fine Hall
Princeton University
Princeton, NJ 08540
79. Dr. D. Vere-Jones 1
Dept. of Math, Victoria Univ. of Wellington
P. O. Box 196
Wellington
NEW ZEALAND
80. Prof. David L. Wallace 1
Statistics Dept., University of Chicago
5734 S. University Ave.
Chicago, IL 60637
81. Dr. Ed Wegman1
George Mason University Fairfax, VA 22030
82. Dr. Alan Weiss 1
Rm. 2C-118
AT\&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974-2040
83. Dr. P. Welch 1
IBM Research Laboratory Yorktown Heights, NY 10598
84. Prof. Roy Welsch 1
M.I.T.
Cambridge, MA 02139
